INSTRUCTIONS:

This quiz is open-book and open-note, and you may work with your classmates. Please answer all questions and show all of your work.

GIVEN:

The steel shaft shown is supported by journal bearings at locations O and C. Dimensions are in inches.

The lubricant is SAE 40 and the operating temperature is 200 °F.

The shaft rotates at 1200 rpm.

The shaft diameter at O is 3.250 in and the bearing (bore) diameter is 3.256 in. The bearing is 3 in long.

Note that 1 reyn = $1 lbf \cdot s/in^2 = 1 psi \cdot s$

FIND:

- (a) The radial load supported by bearing O.
- (b) The Sommerfeld number S for the bearing at O.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$ZM_{c}=0 \rightarrow (600 \text{ Mf})(12")-0_{y}(18")=0$$

$$O_{y}=400 \text{ lbf}$$

$$\leq M_{\epsilon} = 0 \rightarrow (300 \text{ Msf})(6") - 0_{\epsilon}(18") = 0$$

 $0_{\epsilon} = 100 \text{ Msf}$

$$|\vec{F}_0| = \sqrt{0_y^2 + 0_z^2} = \sqrt{400^2 + 100^2}$$

= 412.3 lbf

(b)
$$S = \left(\frac{C}{C}\right)^2 \frac{MN}{P}$$

$$r = \frac{3.25 \text{ in}}{2} = 1.625 \text{ in}$$

$$C = \frac{3.256" - 3.25"}{2} = 0.003 \text{ in}$$

$$N = 1200 \frac{\text{ren}}{\text{min}} \cdot \frac{1 \text{min}}{605} = 20 \frac{\text{ren}}{\text{s}}$$

$$P = \frac{W}{2rl} = \frac{412.3 \, lbf}{(3.25 \, in)(3 \, in)} = 42.29 \, psi$$

$$S = \left(\frac{1.625 \text{ in}}{0.003 \text{ in}}\right)^2 \frac{1.6 \times 10^{-6} \text{ psi·s} \cdot 20^{-20} / \text{s}}{42.29 \text{ psi}}$$